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Metamaterial adhesives for programmable 
adhesion through reverse crack propagation

Dohgyu Hwang1,2, Chanhong Lee    1, Xingwei Yang    3, Jose M. Pérez-González4, 
Jason Finnegan5, Bernard Lee5, Eric J. Markvicka    5, Rong Long    3  
& Michael D. Bartlett    1,2 

Adhesives are typically either strong and permanent or reversible 
with limited strength. However, current strategies to create strong yet 
reversible adhesives needed for wearable devices, robotics and material 
disassembly lack independent control of strength and release, require 
complex fabrication or only work in specific conditions. Here we report 
metamaterial adhesives that simultaneously achieve strong and releasable 
adhesion with spatially selectable adhesion strength through programmed 
cut architectures. Nonlinear cuts uniquely suppress crack propagation by 
forcing cracks to propagate backwards for 60× enhancement in adhesion, 
while allowing crack growth in the opposite direction for easy release and 
reusability. This mechanism functions in numerous adhesives on diverse 
substrates in wet and dry conditions and enables highly tunable adhesion 
with independently programmable adhesion strength in two directions 
simultaneously at any location. We create these multifunctional materials 
in a maskless, digital fabrication framework to rapidly customize adhesive 
characteristics with deterministic control for next-generation adhesives.

Adhesive strength is dictated by how cracks move across a bonded inter-
face1–4. By suppressing crack propagation, strong adhesives are created 
but are difficult to remove, while reusable adhesives promote separa-
tion which limits strength. This makes adhesives commonly either per-
manent and strong or reversible with limited strength. However, many 
applications are increasingly in need of adhesives that overcome this 
trade-off in properties and require strong adhesion with easy removal 
and extended reuse. This seemingly paradoxical combination of prop-
erties is important in applications such as robotics for locomotion and 
grasping, wearable electronics for strong attachment yet easy removal 
of devices to monitor health and deliver drugs, and manufacturing for 
assembly and then disassembly to reduce waste, repurpose materials 
and aid in recycling5–10.

Material approaches to control adhesion typically focus on tun-
ing interfacial chemistry or dissipating mechanical energy11–14. These 
material-based mechanisms can result in very strong adhesives, 

but often do not have mechanisms for release, reusability or direc-
tionality (that is, high strength in one direction relative to another) 
because dissipation near the crack tip is similar in all directions. Geom-
etry and stiffness also control adhesion. This is achieved through 
nano-to-micron-scale bioinspired surface features15–21, passively vary-
ing stiffness through material patterning or actively varying stiffness 
with switchable adhesives22–29, or adding incisions, cuts or disconti-
nuities into adhesives30–34. These features blunt or trap cracks, which 
then reinitiate and propagate again in the original, forward direc-
tion31. This increases adhesion force but does not necessarily facilitate 
directionality or release. Directional strength can be achieved35, but 
it is difficult to raise adhesion strength and directionality because 
geometric mechanisms typically result in adhesion strengths below 
material-based mechanisms. Strategies that leverage both material 
and geometric mechanisms through accessible fabrication approaches 
can open synergistic opportunities to systematically suppress crack 
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material without cuts, while also enabling easy release on the order of 
an unpatterned adhesive by peeling in the opposite direction. These 
characteristics allow for independent control of adhesion strength and 
release with reusability. Reverse crack propagation also tunes adhesion 
strength at any film location and uniquely enables the programming of 
adhesive strength in two directions simultaneously in a single region of 
a film. Metamaterial adhesives do not rely on specific chemistry or envi-
ronmental conditions, microstructured surfaces, or active or patterned 
stiffness to tune adhesion, but utilize nonlinear cuts for highly systematic 
control of adhesive crack propagation and direction across a film.

We term these ‘metamaterial adhesives’ because the nonlinear cut 
architectures decouple global applied loads into a deterministic local 

propagation for strong adhesion yet facilitate crack propagation for 
release and reusability.

Here we introduce a metamaterial adhesive that enables strong and 
reversible adhesion with directional, spatially selective adhesive strength 
through programmed nonlinear cut architectures in adhesive films  
(Fig. 1a). The nonlinear cuts consist of open polygonal shapes that con-
trol how adhesive cracks propagate by trapping cracks and then forcing 
them to reverse direction for high adhesion (Fig. 1b,c), and allow them 
to propagate forward normally for low adhesion (Fig. 1d,e). Through 
reverse crack propagation, we decouple high global peel angles into low 
local peel angles at the adhesive interface. This mechanism enhances 
adhesion strength up to 60× for strong adhesion relative to the same 
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Fig. 1 | High-strength, easy-release metamaterial adhesives. a, The 
metamaterial adhesive consists of cut patterns in an adhesive film. Scale bar, 
15 mm. b,c, High adhesion is achieved in the maximum force direction (b) when 
cracks propagate at low angles and reverse direction to propagate backwards  
to separate (c). Scale bar, 15 mm. d,e, Easy release is achieved in the minimum 
force direction (d) as cracks continuously propagate forward to separate (e).  
f, Maximum force per total width, or maximum strength, of commercial adhesives 

and metamaterial adhesives. g, A metamaterial adhesive shows high adhesion 
(maximum force) and easy release (minimum force) in opposite peel directions. 
Scale bar, 50 mm. h, Adhesion enhancement ratios over an unpatterned adhesive 
for various cut shapes. i, Adhesion directionality for various cut shapes. Data 
are presented as the mean ± s.d. (n = 3 measurements from distinct samples 
for reversible and strong adhesive categories in f and from the same sample 
measured repeatedly for each metamaterial adhesive in f, h and i).
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adhesive response, leveraging insight from mechanical metamateri-
als, which decouple local and global mechanical properties36–38. This 
functionality is intrinsic to the geometry and allows us to enhance 
properties and to enable unique adhesion behaviour in a wide range of 
adhesives, on diverse surfaces, and in dry and wet environments. This 
applicability to diverse materials allows metamaterial adhesives to 
leverage both material and geometric mechanisms to span a spectrum 
of unique adhesive properties, from strong and extremely reversible to 
extremely strong with reversibility, including adhesives with strengths 
over 3,000 N m−1 ( J m−2) that are also reusable and directional. These 
multifunctional metamaterial adhesives achieve highly systematic 
control of adhesive crack movement, and this property allows us to 
achieve an unconventional combination of strong adhesion and easy 
release, and to programme adhesive strength in two directions simulta-
neously. This approach has applicability in numerous adhesives, while 
introducing a digital fabrication framework to automate design and 
rapidly manufacture adhesives in minutes with deterministic control 
of adhesive characteristics at any location across a film.

Characteristics of metamaterial adhesives
Our base metamaterial adhesive consists of a polydimethylsiloxane 
(PDMS) adhesive supported on an inextensible polyethylene tereph-
thalate (PET) backing. Cut architectures are created in a digital design 
environment and are then rapidly patterned in the adhesive by means 
of a laser cutter. We define the maximum adhesion force (Fmax) as the 
condition at which high adhesion is generated, and the minimum adhe-
sion force (Fmin) as the condition at which low adhesion or easy release 
is attained. As adhesive force capacity for an adhesive material is higher 
at small peel angles1,39, the selective decoupling of the global and local 
peel angles provides a mechanism to have a high adhesion in one direc-
tion (Fmax) and easy release in the opposite direction (Fmin).

Metamaterial adhesives are unique compared to a range of com-
mon reversible adhesives and strong adhesives, achieving Post-it 
Note-like easy release and reusability at Fmin, with adhesive strength 
comparable to duct tape at Fmax (Fig. 1f). This dramatic difference in 
Fmax and Fmin can be observed by hanging a weight on the metamaterial 
adhesive, where the high strength holds the weight in the maximum 
force peel direction, yet the metamaterial adhesive releases rapidly in 
the minimum force peel direction (Fig. 1g and Supplementary Video 1).  
Adhesion enhancement with easy release is achieved for a variety of 
nonlinear cut patterns, including triangular, rectangular and hybrid 
cuts (peel curves in Supplementary Fig. 1). The rectangular and hybrid 
cuts display an ~60× increase, and triangular cuts an ~40× increase 
over the unpatterned adhesive, quantified as the enhancement ratio 
(Fmax/Funpatterned) (Fig. 1h). This adhesion enhancement continues to func-
tion over 100 cycles (Supplementary Fig. 2). We quantify the adhesion 
directionality as Fmax/Fmin (Fig. 1i). The hybrid design shows the highest 
enhancement ratio of ~60× while showing exceptionally easy release 
with an adhesion directionality of ~25 (details of adhesion metrics 
are shown in Supplementary Note 1 and Supplementary Fig. 3 and 
mechanistic schematics are shown in Supplementary Figs. 4 and 5).  
Fmin can be tuned by modification of the cut structure into hybrid 
patterns, detuning of the adhesive layer through laser rastering and 
adhesive material selection, which enables Fmin to be equal to or lower 
than the unpatterned region of the film while maintaining high Fmax 
(Supplementary Figs. 6 and 7).

Mechanistic description of reverse crack propagation
To understand the physical origin of the adhesion enhancement and 
directional release, we quantify the crack propagation behaviour by 
plotting the crack front velocity versus time during a 90° peel experi-
ment (Fig. 2a). While an unpatterned adhesive separates at a con-
stant, positive velocity (that is, forward), the metamaterial adhesive 
shows distinct crack dynamics (Supplementary Video 2). Initially, the 
crack propagates forward through the unpatterned region (zone 1), 

accelerates as it passes through the interconnects (zone 2) and then 
is arrested at the base of the rectangular cut where the crack velocity 
drops to nearly zero and the applied force rises (zone 3). Further loading 
reverses the crack propagation direction, as indicated by the negative 
crack velocity, into the adhered rectangular regions at low peel angles 
(zone 4). In this stage, the local peel angle near the crack tip (α2) and 
resultant adhesion force (F) start to increase, resulting in complete 
adhesive delamination and energy release (Fig. 2b,c). This reverse crack 
propagation at low angles is only present in the maximum force peeling 
direction and results in a dramatic rise in adhesive force, as observed 
in experiments (Fig. 2d and Supplementary Video 3) and captured in 
simulations using finite-element analysis (FEA) (Fig. 2e, Supplementary 
Note 2 and Supplementary Fig. 8). In the minimum force peel direction 
and in unpatterned adhesives the crack only propagates forward at 
low forces, as commonly observed in adhesive debonding. Linear cut 
patterns and closed-polygonal-shaped incisions only show primarily 
forward or lateral crack propagation30,32, not systematic reverse crack 
propagation, which gives metamaterial adhesives superior enhance-
ment, directionality and spatial control of adhesion.

The cut size is critical for achieving optimized adhesion enhance-
ment. When the width wp of rectangular cuts is varied with other dimen-
sions fixed, the adhesion force per cut pattern, Fmax/Np, first increases 
with wp and then saturates when 0.5wp exceeds a critical value (Fig. 2f).  
The underlying mechanism is the transition between two distinct 
regimes of reverse crack propagation. When 0.5wp exceeds a charac-
teristic length lch, cracks originating at the tips of interconnects do 
not interfere with each other, leading to circular delaminated regions 
centred at each interconnect (Fig. 2g and Supplementary Fig. 9a). When 
0.5wp is smaller than lch, cracks from neighbouring interconnect tips 
merge before Fmax is reached, resulting in an approximately uniform 
crack front during reverse crack propagation (Fig. 2h and Supple-
mentary Fig. 9b). Theoretical analysis yields (Supplementary Note 3):

lch =√
2D
Gc

wint
w (N∗p + 1) (1)

where D is the flexural rigidity of the adhesive film, wint is the width of 
an interconnect, N∗p is the optimal number of cut patterns that results 
in the highest Fmax, w is the total width and Gc is the critical energy release 
rate. Whereas D, wint, w and Gc are prescribed parameters, N∗p can be 
either determined experimentally or solved algebraically (Supplemen-
tary Note 3). Theoretical analysis also shows that Fmax is maximized 
when 0.5wp = lch (Supplementary Note 3), making lch a key length for 
cut design.

Applicability in diverse materials, surfaces and environments
To evaluate the versatility of the characteristic length lch, we applied 
rectangular cuts with different width wp to various sets of adhesives, 
including PET/PDMS and commercial adhesives such as 3M Post-it 
Note, 3M CoTran backing film/Dow Corning MG-7 9900 Soft Skin Adhe-
sive and 3M Micropore. For each adhesive, the lch calculated using the 
theoretically solved N∗p (Supplementary Note 3) agrees well with the 
experimentally determined N∗p (Supplementary Table 1). In Fig. 3a the 
normalized maximum adhesive forces for all of these different adhe-
sives collapse onto a single master curve normalized by lch. This dem-
onstrates that the metamaterial adhesive design approach is widely 
applicable to diverse materials and must be systematically designed 
around lch. Furthermore, other in-plane dimensions (spacing s, cut 
length lp) must also be equal to or greater than lch. This avoids the pre-
mature interaction of adhesive cracks and allows for full adhesion 
enhancement (Supplementary Figs. 9–11), providing general guidance 
for metamaterial adhesive design.

The metamaterial adhesive strategy is applicable to diverse sub-
strates and conditions. When we applied and measured the adhesive 
underwater, water is displaced and adhesion is enhanced (at least 30× 
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and up to 56×) relative to unpatterned adhesives on glass, plastic/
PMMA, aluminium, steel and Teflon (Fig. 3b and Supplementary Figs. 12  
and 13). These results validate that metamaterial adhesives are appli-
cable over a wide range of material types, substrates and environments 
to enhance adhesion without specific chemistry or surface topology.

Performance of metamaterial adhesives
The adhesion performance of metamaterial adhesives is highlighted 
by comparing combinations of adhesion enhancement, directionality 
and strength to previous literature results (Fig. 3c,d). Here we compare 
the metamaterial adhesives to hydrogels13,40–44, chemical patterns12,45,46, 

stiffness patterns3,23,30–32,47 and bioinspired patterns2,15,18,35,48–50. Figure 3c 
shows that adhesives commonly show enhancement with little direc-
tionality (blue shaded region), or directionality with little enhancement 
(green shaded region), whereas metamaterial adhesives can be made 
with both high enhancement and directionality (red shaded region). 
Figure 3d shows that directional adhesives typically show low strength 
(green shaded region) whereas high-strength adhesives (blue shaded 
region) show little directionality. Metamaterial adhesives overcome 
these challenges and show unique adhesive properties, from strong 
and extremely directional (top-left quadrant) to extremely strong 
with directionality (bottom-right quadrant) while being reusable in 
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all cases (red shaded region). This includes metamaterial adhesives 
with intrinsically strong acrylic adhesive layers such as 3M VHB (Very 
High Bond). This enhanced adhesion beyond the already strong unpat-
terned adhesive and increased strength (which is equivalent to adhesion 
toughness for 90° peeling) to over 3,000 N m−1 ( J m−2). Notably, these 
very strong metamaterial adhesives were still directional and were 
reusable over multiple testing cycles (see Supplementary Fig. 2 for 
cyclic data), which is uncommon because strong adhesives typically 
rely on bonding mechanisms which are not directional and do not func-
tion beyond a single cycle. These types of properties demonstrate the 
versatility of metamaterial adhesives and open exciting performance 
characteristics for adhesive materials.

Digital manufacturing and design of metamaterial adhesives
Metamaterial adhesives can enable spatial tunability of adhesion. We 
utilize digital fabrication with computer-aided design and laser-based 
subtractive manufacturing to enable rapid, maskless fabrication of 
programmed adhesion profiles (Fig. 4a). As a demonstration, we 
design adhesives with rectangular cut patterns in the shape of the 
letters, “HELLO” (Supplementary Fig. 15). Lower adhesion can also 
be achieved by locally reducing width, allowing for adhesive force 
contrast ratios of over 320× (Supplementary Fig. 16). With selectable 
adhesion at specific locations, we can go further to design spatially 
anisotropic adhesion, where a specific region can be programmed to 
have a prescribed adhesive strength in two directions simultaneously. 
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(d) show that metamaterial adhesives occupy unique regions of the adhesive 
property space. This comparison is for passive adhesives (that is, no trigger 
release), no kinetic control (that is, not comparing low to high testing rates), and 
on nominally smooth surfaces. See Supplementary Fig. 14 and Supplementary 
Table 2 for detailed identification of data points. Data in a and b are presented as 
mean ± s.d. (n = 3 measurements from the same sample measured repeatedly).
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We spatially programmed adhesion in discrete regions and decoupled 
the directionality by introducing a second set of rectangular cuts into 
each adhesive region to independently tune the maximum force in 
both peel directions (Fig. 4b–e). We can also automate design where 
the user selects a desired Fmax in the forward direction (Fmax,1) and back-
ward direction (Fmax,2) for a specific location; then an inverse design 
algorithm automates a cut pattern and a laser cutter file is generated.

The programmed and experimental adhesion data show strong 
agreement for three different arbitrary designs, highlighting the ability 
to reliably create customized, spatially controlled adhesion (Fig. 4f). We 
next plot the bidirectional enhancement ratios (Fimax,1/F

i∗
max,2, where i is 

the location index) of each region in Fig. 4g. We find good agreement 
between measured and programmed force ratios for the arbitrarily 
generated designs and two selected designs to maximize the range of 
the bidirectional enhancement ratios (Supplementary Fig. 17). This 
enables a range of 0.018–41, a difference of over three orders of 

magnitude (~2,300×), showing tremendous ability to programme adhe-
sion force in two directions simultaneously at a single region of a film. 
Chemical and microscale patterns and linear cut features may be able to 
spatially control adhesion by pinning cracks, but are unable to readily 
control directional adhesive strength at specific locations as we demon-
strate with metamaterial adhesives and our digital fabrication approach.

Demonstrations of metamaterial adhesives
High-adhesion yet easy-release capabilities are critical for numerous 
applications. To demonstrate metamaterial adhesives in packaging, we 
added a layout of cut patterns into a commercial shipping tape, such 
that strong bonding ensures sealing in all directions yet the adhesive 
can be removed on demand by peeling in a particular direction (Fig. 5a). 
A box sealed with metamaterial tape withstood the weight and impact 
of a brick (1,550 g) over five drop impacts, while the box sealed with the 
same tape without metamaterial cuts completely collapsed only after 
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box tape holds a box closed during impact of a brick, whereas a pristine box tape 
delaminates and fails. Scale bar, 50 mm. c, Metamaterial adhesive wall hanging 
design. d, A metamaterial adhesive supports a frame for over 7 days and is then 
easily removed, whereas a pristine adhesive fails after 20 min. Scale bar, 50 mm. 
e, Metamaterial adhesive glove design. f, A metamaterial adhesive glove can 
pick up flat, fragile objects, transport these to a desired area, and then release 

the object easily. Scale bar, 100 mm. g, Metamaterial adhesive wearable patch 
design. Scale bar, 15 mm. h, A wireless wearable motion control device. Scale bar, 
15 mm. i, An object is picked and transported by a robotic arm controlled by the 
device adhered to a user’s arm. Scale bar, 100 mm. j, The device is transferred to 
another user’s arm. k, The object is transported and released. Registered Virginia 
Tech trademark printed with the approval of Virginia Tech Office of Licensing and 
Trademarks.
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two drops (Fig. 5a,b and Supplementary Video 4). The metamaterial 
adhesive can also hang objects on a wall, while still being easily removed 
(Fig. 5c). Furthermore, we used the ability to control adhesion strength 
in two directions at one location to make the hanging more robust, 
where adhesion strength was increased at the top and bottom edges to 
prevent inadvertent release. A frame hung on a wall with a metamate-
rial adhesive remained in place for over 7 days without any observed 
delamination and was then easily released (Supplementary Video 5), 
while the frame supported by an unpatterned adhesive fell off within 
20 min (Fig. 5d). Metamaterial adhesives can also be applied in wear-
able form factors. A metamaterial adhesive pick-and-release glove was 
created by laser-machining nonlinear cuts into an elastomer-coated 
glove. This allowed a user to pick up a flat object, hold it reliably and 
then effortlessly release the object into a predetermineded location 
through wrist rotation, while the unpatterned glove dropped the object 
(Fig. 5e,f and Supplementary Video 6).

A metamaterial adhesive strip was also created for a human-in- 
the-loop wearable device (Fig. 5h). Here the metamaterial adhesive had 
high adhesion at the edges for strong attachment with easy removal 
after initial peeling, which was qualitatively observed through substan-
tial skin deformation in the Fmax direction, relative to the unpatterned 
and Fmin direction (Fig. 5g). The wearable device, which captures human 
motion and wirelessly transmits the signal to a mirrored robotic arm, 
was attached to the arm of a first user where an object was picked, dis-
placed and released from the robotic arm (Fig. 5i and Supplementary 
Video 7), and then transferred to another user to move the object again 
(Fig. 5j,k). Cut patterns can also be extended to a variety of adhesive 
patch shapes, including a circular adhesive patch for a wearable physi-
ological monitoring device (Supplementary Fig. 18).

Discussion
Our metamaterial adhesive strategy functions with a range of adhesives 
on diverse substrates and conditions to enhance adhesion, provide 
directionality and spatially programme adhesive strength across an 
adhesive sheet in multiple directions simultaneously. Through a mask-
less, digital fabrication environment, we can rapidly output diverse 
adhesive characteristics that cannot be done with chemical or microfea-
ture patterns. Additionally, millimetre–centimetre scale cuts could be 
created with roll-to-roll techniques such as rotary die cutting, providing 
avenues for scale-up. Although our metamaterial adhesive approach 
works in diverse materials, the cuts introduce locations for possible 
rupture, and backings that are meant to tear could exacerbate this 
effect. However, the cut features may also improve tearability, which 
might be useful for counterfeit protection and easy dispensing of tapes. 
Our reverse crack propagation mechanism for programmable adhesion 
may also enable new opportunities in other fracture processes, such as 
toughening bulk materials, adhesion control in micro/nano systems 
(see Supplementary Fig. 19 for dimensional scaling predictions) and 
adhesion for locomotion in robotics. Thus, these metamaterial adhe-
sives can serve as the foundation for the exceptional control of adhesion 
in diverse materials and applications.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41563-023-01577-2.
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Methods
Materials
Adhesive films were made with silicone adhesives (Sylgard 184, MG-7 1010 
and 9900 Soft Skin Adhesive; Dow Corning), or polyurethane adhesives 
(Vytaflex 30; Smooth-On) and backing layers (PET; Grainger and CoTran 
pigmented polyethylene monolayer backing film 9718; 3M, thickness 
(tb) ≈ 100 μm). We used commercial Post-it Notes (3M) and Micropore 
medical surgical tapes (3M) for adhesive fabrication with cut patterns. For 
adhesion tests that compare commercial adhesives with metamaterial 
adhesives, we used commercial Post-it Notes, Micropore medical surgical 
tapes, 101+ masking tape (3M), Scotch Magic Greener tape (3M), Scotch 
heavy-duty shipping packaging tape (3M) and Scotch multipurpose 
waterproof duct tape 3960-RD (3M). The Gc values for all commercial 
adhesives were measured using the same conditions as metamaterial 
adhesives, using a 90° peel set-up at 1 mm s−1. For adhesion tests on 
multiple substrates, we used cast PMMA sheet, borosilicate glass sheet, 
multipurpose 304 stainless steel bar, multipurpose 6061 aluminium bar 
and Teflon PTFE bar (McMaster-Carr). For colouring samples, we used 
Silc-Pig pigments and Ignite fluorescent pigments (Smooth-On).

Adhesive preparation
Adhesives were composed of a PET backing layer and a PDMS adhesive 
layer. A thin PDMS elastomeric layer (20:1 base resin-to-crosslinker 
ratio; elastic modulus (E) = 880 ± 40 kPa, tPDMS ≈ 120 μm or 30:1 base 
resin-to-crosslinker ratio; E = 86 ± 9 kPa, tPDMS ≈ 120 μm) was created on 
a glass plate using a thin film applicator (ZUA 2000; Zehntner Testing 
Instruments) and cured at 80 °C for 60 min. PET films (E = 2.6 ± 0.1 GPa) 
were treated with oxygen plasma (3 min, 300 mtorr oxygen, 400 W; 
PE-75 Series, Plasma Etch), and another layer of PDMS with the same 
mixing ratio was cast onto the cured PDMS layer using a thin film appli-
cator (tPDMS ≈ 30 μm). The surface-treated PET films were placed on 
the uncured PDMS layer, and the adhesive composite was cured in the 
oven at 80 °C for 60 min. For 20:1 PDMS adhesives, tPET = 75 μm. For 30:1 
PDMS adhesives, tPET = 125 μm for Fig. 1f and tPET = 75 μm for Fig. 3b. The 
adhesive composite was then patterned using a laser machine (Epilog 
Laser Fusion M2, 75 W). VHB adhesives were composed of a PET back-
ing layer and a VHB adhesive layer. PET films were treated with oxygen 
plasma (3 min, 300 mtorr oxygen, 400 W; PE-75 Series). A VHB layer  
(75 or 125 μm) was applied onto the surface-treated PET films using a 
seam roller (Seam Rollers). For the demonstration of a hanging frame, 
the adhesives were fabricated with polyurethane elastomers.

Adhesion tests
A 90° peel test set-up was utilized to measure the adhesion strength 
between an adhesive strip and an acrylic substrate on an Instron 5944 
mechanical tester with Bluehill 3 software at a constant displacement 
rate of 1 mm s−1. Before each run, the adhesive surface of each PDMS 
specimen was cleaned with isopropyl alcohol. For each specific condi-
tion, the same sample was measured repeatedly, except for the com-
mercial adhesives in Fig. 1, where distinct samples were measured. The 
adhesive strip was placed on an acrylic substrate and applied with a 
rubber roller with a dwell time of 3 min before executing a test. For the 
underwater test, the adhesive was first immersed in the water for 5 min 
before being attached to each substrate and was tested with a dwell 
time of 3 min. Data obtained from all adhesive tests were analysed in 
MATLAB (R2020a). The critical energy release rate Gc of an adhesive 
strip was calculated by averaging the steady-state adhesion data points 
obtained from an unpatterned adhesive strip. For the crack analysis, we 
recorded video during the peel test and the video was analysed with a 
video analysis tool (Tracker v.5.1.5, Open Source Physics).

Adhesion simulations
FEA for the peeling mechanics of metamaterial adhesives was con-
ducted using ABAQUS software (v.2020). Further details are given in 
Supplementary Note 2.

Fabrication of the human–robot interface and biomonitoring 
patch
A silicone adhesive (MG-7 1010 Soft Skin Adhesive; Dow Corning) and a 
PET layer (tPET = 50 μm) were used to create adhesive patches by follow-
ing the same fabrication procedures above. For both demonstrations, 
the wearable electronics were integrated with the metamaterial adhesive 
using a silicone adhesive (Sil-poxy; Smooth-On). For the human motion 
control sensor, the electronics were composed of a microcontroller 
(STM32; STMicroelectronics), inertia measurement unit (ICM-20948; 
InvenSense TDK), radiofrequency transceiver (nRF24L01+; Nordic) and 
a rechargeable battery with power regulation. The pose of the human 
arm was estimated by integrating the signal from the three-axis gyro-
scope. The rotation signal was recorded using an on-board microcon-
troller, then wirelessly transmitted to another microcontroller that was 
used to control the robotic arm (uArm Swift Pro; UFACTORY). Once the 
robotic arm reached the vicinity of a desired location, a preprogrammed 
sequence of commands was executed to pick, displace and release an 
object at a different location. A wearable pulse oximeter (MAX30101, 
Maxim) was wired to a microcontroller (STM32; STMicroelectronics) 
using a flexible printed circuit board for signal processing and recording. 
The recorded signals were normalized and filtered using a low-pass filter.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the data and relevant information are available within the Article and 
its Supplementary Information. Source data are provided with this paper.
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